Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems.
نویسندگان
چکیده
We review the recent progress in thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical system (MEMS) devices. It was found by thermal measurements that the thermal conductance of a single wall carbon nanotube (SWCNT) was very close to the ballistic thermal conductance of a 1-nm-diameter SWCNT without signatures of phonon-phonon Umklapp scattering, a high thermoelectric figure of merit can potentially be obtained in bismuth telluride (BixTe1-x) nanowires with an optimized atomic ratio of x, and the thermal conductivity of metal oxide nanobelts was suppressed by increased phonon-boundary scattering. We further suggest that dielectrophoresis and other directed-assembly methods can be used for the large-scale integration of nanowires with MEMS to obtain ultrasensitive, stable, and selective sensor systems.
منابع مشابه
Design of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane
This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...
متن کاملExperimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures
New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigat...
متن کاملThe Effect of Material Properties on Sensitivity of the Microelectromechanical Systems Piezoelectric Hydrophone
In this paper, we present mathematical analyses to consider the effect of material properties on the sensitivity of the Microelectromechanical systems (MEMS) piezoelectric hydrophone and improve the sensitivity by choosing the proper material. The selected structure in the present paper is a piezoelectric hydrophone able to work at low frequencies. The piezoelectric hydrophones are widely used ...
متن کاملOne-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, a...
متن کاملA Microelectromechanical System for Nano-Scale Testing of One Dimensional Nanostructures
In situ electron microscopy tensile tests of nanowires and carbon nanotubes performed using a MEMS-based material testing system are reported. The development of the material testing system (previously reported elsewhere23–26) is briefly reviewed. This system, consisting of a surface micromachined actuator and load sensor, makes possible continuous observation of specimen deformation and failur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 47 شماره
صفحات -
تاریخ انتشار 2005